Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Cardiovasc Med ; 8: 644095, 2021.
Article in English | MEDLINE | ID: covidwho-1268239

ABSTRACT

Coronavirus disease 2019 (COVID-19), triggered by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), may lead to extrapulmonary manifestations like diabetes mellitus (DM) and hyperglycemia, both predicting a poor prognosis and an increased risk of death. SARS-CoV-2 infects the pancreas through angiotensin-converting enzyme 2 (ACE2), where it is highly expressed compared to other organs, leading to pancreatic damage with subsequent impairment of insulin secretion and development of hyperglycemia even in non-DM patients. Thus, this review aims to provide an overview of the potential link between COVID-19 and hyperglycemia as a risk factor for DM development in relation to DM pharmacotherapy. For that, a systematic search was done in the database of MEDLINE through Scopus, Web of Science, PubMed, Embase, China National Knowledge Infrastructure (CNKI), China Biology Medicine (CBM), and Wanfang Data. Data obtained underline that SARS-CoV-2 infection in DM patients is more severe and associated with poor clinical outcomes due to preexistence of comorbidities and inflammation disorders. SARS-CoV-2 infection impairs glucose homeostasis and metabolism in DM and non-DM patients due to cytokine storm (CS) development, downregulation of ACE2, and direct injury of pancreatic ß-cells. Therefore, the potent anti-inflammatory effect of diabetic pharmacotherapies such as metformin, pioglitazone, sodium-glucose co-transporter-2 inhibitors (SGLT2Is), and dipeptidyl peptidase-4 (DPP4) inhibitors may mitigate COVID-19 severity. In addition, some antidiabetic agents and also insulin may reduce SARS-CoV-2 infectivity and severity through the modulation of the ACE2 receptor expression. The findings presented here illustrate that insulin therapy might seem as more appropriate than other anti-DM pharmacotherapies in the management of COVID-19 patients with DM due to low risk of uncontrolled hyperglycemia and diabetic ketoacidosis (DKA). From these findings, we could not give the final conclusion about the efficacy of diabetic pharmacotherapy in COVID-19; thus, clinical trial and prospective studies are warranted to confirm this finding and concern.

2.
Front Pharmacol ; 12: 629935, 2021.
Article in English | MEDLINE | ID: covidwho-1236736

ABSTRACT

The 2019 coronavirus disease (COVID-19) is a potentially fatal multisystemic infection caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Currently, viable therapeutic options that are cost effective, safe and readily available are desired, but lacking. Nevertheless, the pandemic is noticeably of lesser burden in African and Asian regions, where the use of traditional herbs predominates, with such relationship warranting a closer look at ethnomedicine. From a molecular viewpoint, the interaction of SARS-CoV-2 with angiotensin converting enzyme 2 (ACE2) is the crucial first phase of COVID-19 pathogenesis. Here, we review plants with medicinal properties which may be implicated in mitigation of viral invasion either via direct or indirect modulation of ACE2 activity to ameliorate COVID-19. Selected ethnomedicinal plants containing bioactive compounds which may prevent and mitigate the fusion and entry of the SARS-CoV-2 by modulating ACE2-associated up and downstream events are highlighted. Through further experimentation, these plants could be supported for ethnobotanical use and the phytomedicinal ligands could be potentially developed into single or combined preventive therapeutics for COVID-19. This will benefit researchers actively looking for solutions from plant bioresources and help lessen the burden of COVID-19 across the globe.

3.
Front Med (Lausanne) ; 8: 644295, 2021.
Article in English | MEDLINE | ID: covidwho-1133926

ABSTRACT

Background: Coronavirus disease 19 (COVID-19) is regarded as an independent risk factor for acute ischemic stroke (AIS) due to the induction of endothelial dysfunction, coagulopathy, cytokine storm, and plaque instability. Method: In this retrospective cohort study, a total of 42 COVID-19 patients with type 2 diabetes mellitus (T2DM) who presented with AIS within 1 week of displaying COVID-19 symptoms were recruited. According to the current anti-DM pharmacotherapy, patients were divided into two groups: a Metformin group of T2DM patients with COVID-19 and AIS on metformin therapy (850 mg, 3 times daily (n = 22), and a Non-metformin group of T2DM patients with COVID-19 and AIS under another anti-DM pharmacotherapy like glibenclamide and pioglitazone (n = 20). Anthropometric, biochemical, and radiological data were evaluated. Results: Ferritin serum level was lower in metformin-treated patients compared to non-metformin treated patients (365.93 ± 17.41 vs. 475.92 ± 22.78 ng/mL, p = 0.0001). CRP, LDH, and D-dimer serum levels were also lowered in metformin-treated patients compared to non-metformin treated patients (p = 0.0001). In addition, lung CT scan scores of COVID-19 patients was 30.62 ± 10.64 for metformin and 36.31 ± 5.03 for non-metformin treated patients. Conclusion: Metformin therapy in T2DM patients was linked to a lower risk of AIS during COVID-19. Further studies are needed to observe the link between AIS in COVID-19 diabetic patients and metformin therapy.

SELECTION OF CITATIONS
SEARCH DETAIL